yuting-(毓婷)

1942920 饮食安全 2025-03-20 17 0

来源:Google、iangoodfellow.com、新智元

  今天yuting,2018年计算机视觉和模式识别会议(CVPR 2018)正在盐湖城举办,这是计算机视觉领域最重要yuting的年度学术会议,包括主大会和若干workshop和tutorial。作为会议的钻石赞助商,谷歌在今年的CVPR上同样表现强势,有超过200名谷歌员工将在大会上展示论文或被邀请演讲,谷歌也组织和参与了多个研讨会。

  根据谷歌官方博客,CVPR 2018谷歌共有45篇论文被接收。这些论文关注下一代智能系统和机器感知领域的最新机器学习技术,包括Pixel 2和Pixel 2 XL智能手机的人像模式背后的技术,V4版本的Open Images数据集等等。

  Google at CVPR 2018

  组织者

财务主席:Ramin Zabih

领域主席:Sameer Agarwal, Aseem Agrawala, Jon Barron, Abhinav Shrivastava, Carl Vondrick, Ming-Hsuan Yang

  论文列表

Orals/Spotlights

  作为结构表示的对象标志的无监督发现

  Unsupervised Discovery of Object Landmarks as Structural Representations

  Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He, Honglak Lee

  DoubleFusion:利用单个深度传感器实时捕捉人体的内体形状

  DoubleFusion: Real-time Capture of Human Performances with Inner Body Shapes from a Single Depth Sensor

  Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai Dai, Hao Li, Gerard Pons-Moll, Yebin Liu

  用于无监督运动重定向的神经运动网络

  Neural Kinematic Networks for Unsupervised Motion Retargetting

  Ruben Villegas, Jimei Yang, Duygu Ceylan, Honglak Lee

  用核预测网络去噪

  Burst Denoising with Kernel Prediction Networks

  Ben Mildenhall, Jiawen Chen, Jonathan Barron, Robert Carroll, Dillon Sharlet, Ren Ng

  神经网络的量化和训练,以实现高效的整数运算推理

  Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

  Benoit Jacob, Skirmantas Kligys, Bo Chen, Matthew Tang, Menglong Zhu, Andrew Howard, Dmitry Kalenichenko, Hartwig Adam

  AVA:一个时空本地化原子视觉动作视频数据集

  AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions

  Chunhui Gu, Chen Sun, David Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, Jitendra Malik

  视觉问答的视觉-文本注意力焦点

  Focal Visual-Text Attention for Visual Question Answering

  Junwei Liang, Lu Jiang, Liangliang Cao, Li-Jia Li, Alexander G. Hauptmann

  推断来自阴影中的光场

  Inferring Light Fields from Shadows

  Manel Baradad, Vickie Ye, Adam Yedida, Fredo Durand, William Freeman, Gregory Wornell, Antonio Torralba

  修改多个视图中的非本地变量

  Modifying Non-Local Variations Across Multiple Views

  Tal Tlusty, Tomer Michaeli, Tali Dekel, Lihi Zelnik-Manor

  超越卷积的迭代视觉推理

  Iterative Visual Reasoning Beyond Convolutions

  Xinlei Chen, Li-jia Li, Fei-Fei Li, Abhinav Gupta

  3D形变模型回归的无监督训练

  Unsupervised Training for 3D Morphable Model Regression

  Kyle Genova, Forrester Cole, Aaron Maschinot, Daniel Vlasic, Aaron Sarna, William Freeman

  学习可扩展图像识别的可转换架构

  Learning Transferable Architectures for Scalable Image Recognition

  Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc Le

  生物物种分类和检测数据集

  The iNaturalist Species Classification and Detection Dataset

  Grant van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, Serge Belongie

  利用观察世界来学习内在的图像分解

  Learning Intrinsic Image Decomposition from Watching the World

  Zhengqi Li, Noah Snavely

  学习智能对话框用于边界框注释

  Learning Intelligent Dialogs for Bounding Box Annotation

  Ksenia Konyushkova, Jasper Uijlings, Christoph Lampert, Vittorio Ferrari

Posters

  重新审视训练对象类别检测器的知识迁移

  Revisiting Knowledge Transfer for Training Object Class Detectors

  Jasper Uijlings, Stefan Popov, Vittorio Ferrari

  重新思考用Faster R-CNN架构进行时间动作定位

  Rethinking the Faster R-CNN Architecture for Temporal Action Localization

  Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David Ross, Jia Deng, Rahul Sukthankar

  视觉对象识别的层次式新颖性检测

  Hierarchical Novelty Detection for Visual Object Recognition

  Kibok Lee, Kimin Lee, Kyle Min, Yuting Zhang, Jinwoo Shin, Honglak Lee

  COCO-Stuff:语境中的事物和材料类别

  COCO-Stuff: Thing and Stuff Classes in Context

  Holger Caesar, Jasper Uijlings, Vittorio Ferrari

  用于视频分类的外观关系网络

  Appearance-and-Relation Networks for Video Classification

  Limin Wang, Wei Li, Wen Li, Luc Van Gool

  MorphNet:深度网络的快速简单资源约束结构学习

  MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks

  Ariel Gordon, Elad Eban, Bo Chen, Ofir Nachum, Tien-Ju Yang, Edward Choi

  图形卷积自动编码器的可变形形状补完

  Deformable Shape Completion with Graph Convolutional Autoencoders

  Or Litany, Alex Bronstein, Michael Bronstein, Ameesh Makadia

  MegaDepth:从互联网照片学习单视图深度预测

  MegaDepth: Learning Single-View Depth Prediction from Internet Photos

  Zhengqi Li, Noah Snavely

  作为结构表示的对象标志的无监督发现

  Unsupervised Discovery of Object Landmarks as Structural Representations

  Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He, Honglak Lee

  用核预测网络去噪

  Burst Denoising with Kernel Prediction Networks

  Ben Mildenhall, Jiawen Chen, Jonathan Barron, Robert Carroll, Dillon Sharlet, Ren Ng

  神经网络的量化和训练,以实现高效的整数运算推理

  Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

  Benoit Jacob, Skirmantas Kligys, Bo Chen, Matthew Tang, Menglong Zhu, Andrew Howard, Dmitry Kalenichenko, Hartwig Adam

  Pix3D:单图像3D形状建模的数据集和方法

  Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling

  Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Tianfan Xue, Joshua Tenenbaum,William Freeman

  用于表示和编辑图像的稀疏智能轮廓

  Sparse, Smart Contours to Represent and Edit Images

  Tali Dekel, Dilip Krishnan, Chuang Gan, Ce Liu, William Freeman

  MaskLab:通过使用语义和方向特征优化对象检测进行实例分割

  MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features

  Liang-Chieh Chen, Alexander Hermans, George Papandreou, Florian Schroff, Peng Wang,Hartwig Adam

  大规模细粒度分类和领域特定的迁移学习

  Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning

  Yin Cui, Yang Song, Chen Sun, Andrew Howard, Serge Belongie

  改进的带有初始值和空间自适应比特率的有损网络压缩

  Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks

  Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Sung Jin Hwang, George Toderici, Troy Chinen, Joel Shor

  MobileNetV2:反向残差和线性瓶颈

  MobileNetV2: Inverted Residuals and Linear Bottlenecks

  Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

  ScanComplete:3D扫描的大规模场景补完和语义分割

  ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans

  Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed, Juergen Sturm, Matthias Nießner

  Sim2Real通过循环控制查看不变视觉伺服

  Sim2Real View Invariant Visual Servoing by Recurrent Control

  Fereshteh Sadeghi, Alexander Toshev, Eric Jang, Sergey Levine

  Alternating-Stereo VINS:可观测性分析和性能评估

  Alternating-Stereo VINS: Observability Analysis and Performance Evaluation

  Mrinal Kanti Paul, Stergios Roumeliotis

  桌上足球

  Soccer on Your Tabletop

  Konstantinos Rematas, Ira Kemelmacher, Brian Curless, Steve Seitz

  使用3D几何约束从单眼视频中无监督地学习深度和自yuting我运动

  Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints

  Reza Mahjourian, Martin Wicke, Anelia Angelova

  AVA:一个时空本地化原子视觉动作视频数据集

  AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions

  Chunhui Gu, Chen Sun, David Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, Jitendra Malik

  推断来自阴影中的光场

  Inferring Light Fields from Shadows

  Manel Baradad, Vickie Ye, Adam Yedida, Fredo Durand, William Freeman, Gregory Wornell, Antonio Torralba

  修改多个视图中的非本地变量

  Modifying Non-Local Variations Across Multiple Views

  Tal Tlusty, Tomer Michaeli, Tali Dekel, Lihi Zelnik-Manor

  用于单目深度估计的孔径监控

  Aperture Supervision for Monocular Depth Estimation

  Pratul Srinivasan, Rahul Garg, Neal Wadhwa, Ren Ng, Jonathan Barron

  实例嵌入转移到无监督视频对象分割

  Instance Embedding Transfer to Unsupervised Video Object Segmentation

  Siyang Li, Bryan Seybold, Alexey Vorobyov, Alireza Fathi, Qin Huang, C.-C. Jay Kuo

  帧回放视频超分辨率

  Frame-Recurrent Video Super-Resolution

  Mehdi S. M. Sajjadi, Raviteja Vemulapalli, Matthew Brown

  稀疏时间池网络的弱监督动作定位

  Weakly Supervised Action Localization by Sparse Temporal Pooling Network

  Phuc Nguyen, Ting Liu, Gautam Prasad, Bohyung Han

  超越卷积的迭代视觉推理

  Iterative Visual Reasoning Beyond Convolutions

  Xinlei Chen, Li-jia Li, Fei-Fei Li, Abhinav Gupta

  学习和使用时间箭头

  Learning and Using the Arrow of Time

  Donglai Wei, Andrew Zisserman, William Freeman, Joseph Lim

  HydraNets:高效推理的专用动态架构

  HydraNets: Specialized Dynamic Architectures for Efficient Inference

  Ravi Teja Mullapudi, Noam Shazeer, William Mark, Kayvon Fatahalian

  在有限的监督下进行胸部疾病的识别和定位

  Thoracic Disease Identification and Localization with Limited Supervision

  Zhe Li, Chong Wang, Mei Han, Yuan Xue, Wei Wei, Li-jia Li, Fei-Fei Li

  推断分层文本-图像合成的语义布局

  Inferring Semantic Layout for Hierarchical Text-to-Image Synthesis

  Seunghoon Hong, Dingdong Yang, Jongwook Choi, Honglak Lee

  深层语义的脸部去模糊

yuting-(毓婷)

  Deep Semantic Face Deblurring

  Ziyi Shen, Wei-Sheng Lai, Tingfa Xu, Jan Kautz, Ming-Hsuan Yang

  3D形变模型回归的无监督训练

  Unsupervised Training for 3D Morphable Model Regression

  Kyle Genova, Forrester Cole, Aaron Maschinot, Daniel Vlasic, Aaron Sarna, William Freeman

  学习可扩展图像识别的可转换架构

  Learning Transferable Architectures for Scalable Image Recognition

  Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc Le

  利用观察世界来学习内在的图像分解

  Learning Intrinsic Image Decomposition from Watching the World

  Zhengqi Li, Noah Snavely

  PiCANet:针对像素级的上下文注意力,以检测显著性

  PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection

  Nian Liu, Junwei Han, Ming-Hsuan Yang

Tutorials

  机器人和驾驶中的计算机视觉

  Computer Vision for Robotics and Driving

  Anelia Angelova, Sanja Fidler

  无监督视觉学习

  Unsupervised Visual Learning

  Pierre Sermanet, Anelia Angelova

  UltraFast 3D感应,重建和理解人物、物体和环境

  UltraFast 3D Sensing, Reconstruction and Understanding of People, Objects and Environments

  Sean Fanello, Julien Valentin, Jonathan Taylor, Christoph Rhemann, Adarsh Kowdle, Jürgen Sturm, Christine Kaeser-Chen, Pavel Pidlypenskyi, Rohit Pandey, Andrea Tagliasacchi, Sameh Khamis, David Kim, Mingsong Dou, Kaiwen Guo, Danhang Tang, Shahram Izadi

  生成对抗网络

  Generative Adversarial Networks

  Jun-Yan Zhu, Taesung Park, Mihaela Rosca, Phillip Isola, Ian Goodfellow

  Ian Goodfellowa:生成对抗网络(35 PPT)

  

  

  生成建模:密度估计

训练数据→密度函数

  

  生成建模:样本生成

  训练数据(CelebA)→样本生成

  

  对抗网络的框架

  

  Self-Attention GAN

  ImageNet上最优的FID:1000个类别,128x128 像素

  

  Self-Play

  

  用GAN能做什么呢yuting

模拟环境和训练数据

缺失数据

半监督学习

多个正确答案

逼真的生成任务

基于模型的优化

自动化定制

域适应

  

  自动驾驶数据集

  

  用于模拟训练数据的GAN

  

  

  GAN用于缺失数据

从上面这张图像能看出什么呢?

用GAN模型看出它是一张脸

  

  

  GAN用于半监督学习

  用于半监督学习的有监督鉴别器

  半监督分类

MNIST: 100训练标签 -> 80 测试错误

SVHN: 1000 训练标签 -> 4.3% 测试误差

CIFAR-10: 4000 标签 -> 14.4% 测试误差

  

  

  GAN用于下一帧视频的预测

  

  GAN用于逼真的生成任务

iGAN

  

图像到图像翻译

  

无监督的图像到图像翻译

  

CycleGAN

  

文本-图像合成

  

  GAN用于基于模型的优化

设计DNA以优化蛋白质结合的研究

  

  GAN用于自动化定制

个性化的GANufacturing

  

  

  GAN用于域自适应

域对抗网络

  

yuting-(毓婷)

  GAN的一些技巧

在鉴别器和生成器中 (Zhang et al 2018) 都进行频谱归一化 (Miyato et al 2017)

生成器和鉴别器的学习率不同(Heusel et al 2017)

不需要比生成器更频繁地运行鉴别器(Zhang et al 2018)

许多不同的损失函数都能很好地工作(Lucic et al 2017); 可以花费更多时间调整超参数,而不是尝试不同的损失函数

  

  地址:https://ai.googleblog.com

  https://www.iangoodfellow.com/slides/2018-06-18.pdf